Dr. ARTURO VALDIVIA GONZALEZ
Resumen curricular:
En 2004 egrese como ingeniero en comunicaciones y electrónica por parte dela Universidad de Guadalajara, posteriormente egrese de la maestría en ciencias en ingeniería electrónica y computación en la Universidad de Guadalajara en el 2015 y obtuve el grado de doctor en ciencias de la electrónica y la computación con orientación en orientación en control automático y sistemas inteligentes el año 2019. Desde marzo del 2019 funjo como profesor investigador Titular A en el Ciencias Computacionales del Centro Universitario de Ciencias Exactas e ingenierías. Miembro del Sistemas Nacional de Investigadores en el nivel I, perfil PRODEP. Mis líneas de investigación son el Computo Evolutivo aplicado a problemas de internet de las cosas, visión artificial y energía. Actualmente se han publicado 17 artículos en revistas indexadas y soy revisor en al menos 6 revistas internacionales. Miembro del cuerpo académico de “Inteligencia Computacional” con clave: UDG-CA-1139 el cual se encuentra en Formación y profesor de los posgrados de: Doctorado en Ciencias de la Electrónica y la Computación, el Doctorado en Ciencias en Inteligencia computacional y la Maestría de cómputo aplicado.
Perfil de Investigador SNII:
Perfil PRODEP:
Bases de datos bibliográficas:
Publicaciones del académico:
- Improving the exploitation in the estimation of distribution algorithm through simulated annealing strategies for solar energy problems
- Fault-Tolerant Closed-Loop Controller Using Online Fault Detection by Neural Networks
- Handling the balance of operators in evolutionary algorithms through a weighted Hill Climbing approach
- Improved Golden Sine II in Synergy with Non-monopolized Local Search Strategy
- IDEL: An Improved Differential Evolution with Lissajous Mutation
- An overview of fundamentals of Particle Swarm Optimization: Metaheuristic Algorithms with Python
- A novel diversity-aware inertia weight and velocity control for particle swarm optimization
- An Hyper-Heuristic Based Population Management Through Statistical Analysis and Phases Optimization
- Improving the Convergence of the PSO Algorithm with a Stagnation Variable and Fuzzy Logic
- Sensor Fault Tolerant Treatment for Type 1 Diabetes Mellitus Patients
- Electrophysiological Signals Simulation with Machine Learning
- Electrophysiological Signals Simulation with Machine Learning
- Machine Learning and Data Analysis in the Prevention of Complications Derived from Diabetes
- Improving Metaheuristic Algorithm Design Through Inequality and Diversity Analysis: A Novel Multi-Population Differential Evolution
- An improved multi-population whale optimization algorithm
- Improving the optimization performance by an adaptable design: A dynamic selection of operators via criteria-based matrix for evolutionary algorithms
- Handling stagnation through diversity analysis: A new set of operators for evolutionary algorithms
- Digital image thresholding by using a lateral inhibition 2D histogram and a Mutated Electromagnetic Field Optimization
- A Literature Review of Hand-Based Interaction in Virtual Environments Through Computer Vision
- Moth Swarm Algorithm for Image Contrast Enhancement
- A Novel Metaheuristic Approach for Image Contrast Enhancement Based on Gray-Scale Mapping
- Learning classical and metaheuristic optimization techniques by using an educational platform based on LEGO robots
- Improving the segmentation of magnetic resonance brain images using the LSHADE optimization algorithm
- Group-based synchronous-asynchronous grey wolf optimizer
- Studies in Computational Intelligence
- Metaheuristics in Machine Learning: Theory and Applications
- A novel hybrid metaheuristic optimization method: hypercube natural aggregation algorithm
- Segmentation of magnetic resonance brain images through the self-adaptive differential evolution algorithm and the minimum cross-entropy criterion
- Applications of Hybrid Metaheuristic Algorithms for Image Processing
- Autonomous Particles Groups for Synchronous-Asynchronous Particle Swarm Optimization
- A hybrid evolutionary approach based on the invasive weed optimization and estimation distribution algorithms
- A comparative study of evolutionary computation techniques for solar cells parameter estimation
- Ls-II: an improved locust search algorithm for solving optimization problems
- Improved unsupervised color segmentation using a modified HSV color model and a bagging procedure in K-means++ algorithm
- A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior
- Ls‐II: An Improved Locust Search Algorithm for Solving Optimization Problems
- Improved Unsupervised Color Segmentation Using a Modified HSV Color Model and a Bagging Procedure in K -Means++ Algorithm
- Research Article Ls-II: An Improved Locust Search Algorithm for Solving Optimization Problems
- Improved Unsupervised Color Segmentation Using a Modified HSV Color Model and a Bagging Procedure in K‐Means++ Algorithm
- A template matching approach based on the behavior of swarms of locust
- A global optimization algorithm inspired in the behavior of selfish herds
- A chaos-embedded gravitational search algorithm for the identification of electrical parameters of photovoltaic cells
- A states of matter search-based approach for solving the problem of intelligent power allocation in plug-in hybrid electric vehicles