
Dr. JORGE MANUEL CHÁVEZ AGUILAR
Resumen curricular:
El Dr. Jorge Chávez es profesor investigador del Centro Universitario de Ciencia Exactas e Ingenierías de la Universidad de Guadalajara. Es Ingeniero Mecánico con posgrados de maestría y doctorado en Ciencia de Materiales por la UdeG. Es miembro del Sistema Nacional de Investigadores nivel I, tiene un ínidce H de 8 y cuenta con 29 artículos JCR. Sus líneas de investigación incluyen el disño y el procesamiento de materiales biomédicos, aleaciones aeroespaciales e ingenieriles así como aleaciones de alta entropía. Sus actividades de investigación se desarrollan en las instalaciones de los Laboratorios de Ingeniería Mecánica Eléctrica y del Posgrado en Ciencia de Matriales.
Perfil de Investigador SNII:
Bases de datos bibliográficas:
Publicaciones del académico:
- Electrochemical characterization of Cr/CrN/B4C/BCN films deposited by magnetron sputtering under mixed Ar-Ne atmospheres
- Analysis of the Ag addition on the processing and microstructure of a biomedical Ti–25Ta alloy fabricated by powder metallurgy
- Exploring powder metallurgy-processed Ti–25Ta-xCu alloys for potential biomedical applications
- Processing of Porous-Core Materials for Bone Implant Applications: A Permeability and Mechanical Strength Analysis
- Exploring powder metallurgy-processed Ti-25Ta-xCu alloys for potential biomedical applications.
- Elastoplastic and Electrochemical Characterization of xTiB2 Strengthened Ti Porous Composites for Their Potential Biomedical Applications
- Effect of Ti addition on microstructure of Cu–Al–Ni shape memory alloys
- Effect of niobium on corrosion resistance of 75Ti-x-25Ta-xNb alloy
- Analysis of the Ag addition on the processing and microstructure of a biomedical Ti–25Ta alloy fabricated by powder metallurgy
- Correlation between TiO2 nanotubes thickness and their tribocorrosion performance in simulated body fluid solution
- Powder Metallurgy Fabrication and Characterization of Ti6Al4V/xCu Alloys for Biomedical Applications
- Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy
- Fabrication of tailored Ti6Al4V-based materials by conventional powder metallurgy for bone implant applications
- Analyzing the co-sintering of Ti6Al4V/Al2O3 bilayer materials
- Study of the Incorporation of SiC Microfibers and Their Effect on Adherence at the Interface of a NiCoCrAlY-7YSZ Thermal Barrier Coating
- Processing of Porous Core Materials Mimicking Bone’s Microstructure: A Permeability and Mechanical Strength Analysis
- High-Temperature Erosion of SiC-NiCrAlY/Cr3C2-NiCr Coating
- Sintering Analysis of Porous Ti/xTa Alloys Fabricated from Elemental Powders
- Ti64/20Ag Porous Composites Fabricated by Powder Metallurgy for Biomedical Applications
- Tribological behavior of multiphase super hard boron nitride films deposited by HiPIMS
- Analysis of in situ gas nitriding by dilatometry of porous Ti6Al4V materials
- Corrosion and tribocorrosion behavior of Ti6Al4V/xTiN composites for biomedical applications
- Fabrication Of Tailored Ti-Based Materials By Conventional Powder Metallurgy For Bone Implant Applications
- Effect of the Ag addition on the compressibility, sintering and properties of Ti6Al4V/xAg composites processed by powder metallurgy
- Design of architectured Ti6Al4V-based materials for biomedical applications fabricated via powder metallurgy
- Effect of CoCrMo Addition on Ti6Al4V/xCoCrMo Biomedical Composites Processed by Powder Metallurgy
- Nanoindentation and tribological properties of Ni51Ti49−xTax (x < 5 at. %) alloys fabricated by arc melting
- Nanoindentation and tribological properties of Ni51Ti49−xTax (x < 5 at. %) alloys fabricated by arc melting
- Nanoindentation and tribological properties of Ni51Ti49−xTax (x < 5 at. %) alloys fabricated by arc melting
- Microstructure and corrosion characterization of a Ti-30Zr alloy with Ta additions processed by arc-melting for biomedical applications
- Nanoindentation and tribological properties of Ni51Ti49−xTax (x < 5 at. %) alloys fabricated by arc melting
- Powder metallurgy fabrication and characterization of Ti6Al4V/xCu alloys for biomedical applications
- Fabrication of architectured materials based on Ti6Al4V for biomedical applications by conventional powder metallurgy
- Design and characterization of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy
- Effect of the Ag addition on the compressibility, sintering and properties of Ti6al4V/xAg composites processed by powder metallurgy
- Design and characterization of Ti6Al4V/20CoCrMo− highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy
- Processing and Characterization of Bilayer Materials by Solid State Sintering for Orthopedic Applications
- Tribocorrosion and corrosion behavior of quaternary Ti-24Nb-xZr-ySn alloys in SBF
- Nanoindentation and tribological properties of Ni51Ti49− xTax (x< 5 at.%) alloys fabricated by arc melting
- Design and characterization of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy
- Ti-TiH2 matrix composites reinforced with TiN by high vacuum sintering (HVS) for biomedical applications
- Fabrication and characterization of highly porous Ti6Al4V/xTa composites for orthopedic applications
- Tribocorrosion behavior of Ti64-xTa alloys fabricated through powder metallurgy
- Characterization of Ti6Al4V–Ti6Al4V/30Ta Bilayer Components Processed by Powder Metallurgy for Biomedical Applications
- Investigation of a Ti–30Zr binary alloy fabricated through spark plasma sintering
- Investigation of liquid state sintering and properties of Ti6Al4V/xAg composites for biomedical applications
- Investigation of a Ti–30Zr binary alloy fabricated through spark plasma sintering
- Investigation of a Ti.30Zr binary alloy fabricated through spark plasma sintering