Dr. ABELARDO MONTESINOS LÓPEZ
Resumen curricular:
Abelardo Montesinos López es Licenciado en Estadística por la Universidad Autónoma Chapingo, Maestro y Doctor en Probabilidad y Estadística por el Centro de Investigación en Matemáticas (CIMAT), Guanajuato, México. Actualmente es profesor en el departamento de Matemáticas (CUCEI), Universidad de Guadalajara. Miembro del Sistema Nacional de Investigadores Nivel I. Cuenta con más de 50 artículos y es coautor de 2 libros y de más de 5 capítulos de libros. Entre sus áreas de interés están el desarrollo y/o aplicación de modelos de predicción genómica para fitomejoramiento, modelos mixtos lineales generalizados, análisis de supervivencia, análisis bayesiano y análisis multivariado.
Perfil de Investigador SNII:
Cuerpos académicos:
Estadística
Bases de datos bibliográficas:
Publicaciones del académico:
- Enhancing winter wheat prediction with genomics, phenomics and environmental data
- A Penalized Regression Method for Genomic Prediction Reduces Mismatch between Training and Testing Sets
- Exploring Data Augmentation Algorithm to Improve Genomic Prediction of Top-Ranking Cultivars
- Data Augmentation Enhances Plant-Genomic-Enabled Predictions
- A marker weighting approach for enhancing within-family accuracy in genomic prediction
- Bayesian discrete lognormal regression model for genomic prediction
- Deep learning methods improve genomic prediction of wheat breeding
- An extended multiplicative error model of allometry: Incorporating systematic components, non-normal distributions, and piecewise heteroscedasticity
- Feature engineering of environmental covariates improves plant genomic-enabled prediction
- Refining penalized ridge regression: a novel method for optimizing the regularization parameter in genomic prediction
- A review of multimodal deep learning methods for genomic-enabled prediction in plant breeding
- Genotype Performance Estimation in Targeted Production Environments by Using Sparse Genomic Prediction
- A Feature Weighting Approach for Enhancing within Family Genomic Accuracy
- Machine learning algorithms translate big data into predictive breeding accuracy
- A graph model for genomic prediction in the context of a linear mixed model framework
- Data Augmentation Improves Genomic-Enabled Prediction
- Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
- Two simple methods to improve the accuracy of the genomic selection methodology
- Designing optimal training sets for genomic prediction using adversarial validation with probit regression
- Multivariate Genomic Hybrid Prediction with Kernels and Parental Information
- Efficacy of plant breeding using genomic information
- Sparse multi-trait genomic prediction under balanced incomplete block design
- Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
- Multimodal deep learning methods enhance genomic prediction of wheat breeding
- Optimizing Sparse Testing for Genomic Prediction of Plant Breeding Crops
- Integrating Parental Phenotypic Data Enhances Prediction Accuracy of Hybrids in Wheat Traits
- A novel method for genomic-enabled prediction of cultivars in new environments
- Do feature selection methods for selecting environmental covariables enhance genomic prediction accuracy?
- Sparse multi‐trait genomic prediction under balanced incomplete block design
- A Multi-Trait Gaussian Kernel Genomic Prediction Model under Three Tunning Strategies
- A Comparison between Three Tuning Strategies for Gaussian Kernels in the Context of Univariate Genomic Prediction
- Multi-trait genome prediction of new environments with partial least squares
- A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library
- Partial Least Squares Enhances Genomic Prediction of New Environments
- A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
- Using an incomplete block design to allocate lines to environments improves sparse genome-based prediction in plant breeding
- Bayesian multitrait kernel methods improve multienvironment genome-based prediction
- Linear mixed models
- Artificial neural networks and deep learning for genomic prediction of continuous outcomes
- General Elements of Genomic Selection and Statistical Learning
- Preprocessing Tools for Data Preparation
- Support vector machines and support vector regression
- Random forest for genomic prediction
- Artificial Neural Networks and Deep Learning for Genomic Prediction of Binary, Ordinal, and Mixed Outcomes
- Convolutional neural networks
- Overfitting, model tuning, and evaluation of prediction performance
- Elements for Building Supervised Statistical Machine Learning Models
- Reproducing Kernel Hilbert spaces regression and classification methods
- Bayesian and classical prediction models for categorical and count data
- A Revision of the Traditional Analysis Method of Allometry to Allow Extension of the Normality-Borne Complexity of Error Structure: Examining the Adequacy of a Normal-Mixture Distribution-Driven Error Term