Perfil del usuario

Dr. JUAN BERNARDO MORALES CASTAÑEDA

juanbernardo.morales@academicos.udg.mx
Departamento de adscripción: INNOVACION BASADA EN LA INFORMACION Y EL CONOCIMIENTO
Nombramiento: PROFESOR DOCENTE ASOCIADO "A"
Categoría: TEMPORAL

Resumen curricular:

El Dr. Bernardo Morales es profesor del Centro Universitario de Ciencias Exactas e Ingenierías de la Universidad de Guadalajara. Es Ingeniero en computación, Maestro en Ciencias de la Ingeniería Electrónica y Computación, y Doctor en Ciencias de la Electrónica y Computación. Es miembro del Sistema Nacional de Investigadores nivel 1, tiene un índice H de 7 y cuenta con 15 artículos JCR, ademas de un libro, múltiples capítulos de libro y una patente. Sus líneas de investigación incluyen el análisis y diseños de algoritmos metaheurísticos, visión artificial y segmentación de imágenes.

Perfil de Investigador SNII:

Nivel SNII:
I
Área del conocimiento:
VIII. Ingenierías y Desarrollo Tecnológico, y
Campo de investigación:
Ciencias tecnológicas
Periodo vigente:
1 de enero de 2023 - 31 de diciembre de 2027

Bases de datos bibliográficas:

Publicaciones del académico:

2026 - 1 articulos.
  • Initialization and Diversity in Optimization Algorithms
2025 - 4 articulos.
2024 - 22 articulos.
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • Exploration Paths Derived from Trajectories Extracted from Second-Order System Responses
  • Enhancing Anisotropic Diffusion Filtering via Multi-objective Optimization
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • Utilizing the Moth Swarm Algorithm to Improve Image Contrast
  • Introduction to Metaheuristic Methods
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • A Measure of Diversity for Metaheuristic Algorithms Employing Population-Based Approaches
  • Fractional Fuzzy Controller Using Metaheuristic Techniques
  • Population of Hyperparametric Solutions for the Design of Metaheuristic Algorithms: An Empirical Analysis of Performance in Particle Swarm Optimization
  • Population Control in Metaheuristic Algorithms: Can Fewer Be Better?
  • Metaheuristics International Conference
  • Adaptability and Efficiency in Population Management: A multi-population CMA-ES Strategy for High-Dimensional Optimization
  • Handling the balance of operators in evolutionary algorithms through a weighted Hill Climbing approach
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • Striving for Optimal Equilibrium in Metaheuristic Algorithms: Is It Attainable?
  • Population of Hyperparametric Solutions for the Design of Metaheuristic Algorithms: An Empirical Analysis of Performance in Particle Swarm Optimization
  • A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
  • Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis
  • Considering radial basis function neural network for effective solution generation in metaheuristic algorithms
2023 - 6 articulos.
  • A new method to solve rotated template matching using metaheuristic algorithms and the structural similarity index
  • Improving Metaheuristic Algorithm Design Through Inequality and Diversity Analysis: A Novel Multi-Population Differential Evolution
  • Optimal evaluation of re-opening policies for COVID-19 through the use of metaheuristic schemes
  • A novel diversity-aware inertia weight and velocity control for particle swarm optimization
  • An Hyper-Heuristic Based Population Management Through Statistical Analysis and Phases Optimization
  • Improving the Convergence of the PSO Algorithm with a Stagnation Variable and Fuzzy Logic
2022 - 8 articulos.
  • Studies in Computational Intelligence
  • A Review of the Use of Quasi-random Number Generators to Initialize the Population in Meta-heuristic Algorithms
  • An agent-based transmission model of COVID-19 for re-opening policy design
  • An improved multi-population whale optimization algorithm
  • Improving the optimization performance by an adaptable design: A dynamic selection of operators via criteria-based matrix for evolutionary algorithms
  • Handling stagnation through diversity analysis: A new set of operators for evolutionary algorithms
  • Solving Reality-Based Trajectory Optimization Problems with Metaheuristic Algorithms Inspired by Metaphors
  • A diversity metric for population-based metaheuristic algorithms
2021 - 3 articulos.
  • Population management in metaheuristic algorithms: Could less be more?
  • Group-based synchronous-asynchronous grey wolf optimizer
  • Improving the segmentation of magnetic resonance brain images using the LSHADE optimization algorithm
2020 - 6 articulos.
  • A better balance in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation, 54, 100671
  • An improved clustering method based on biological visual models
  • A better balance in metaheuristic algorithms: Does it exist?
  • A better balance in metaheuristic algorithms: Does it exist? Swarm Evol Comput 54: 100671
  • A better balance in metaheuristic algorithms: Does it exist?, Swarm Evol. Comput., 54 (2020), 100671
  • A better balance in metaheuristic algorithms: does it exist? Swarm Evol. Comput. 54, 100671 (2020)