Dr. JUAN BERNARDO MORALES CASTAÑEDA
juanbernardo.morales@academicos.udg.mx
Departamento de adscripción:
INNOVACION BASADA EN LA INFORMACION Y EL CONOCIMIENTO
Nombramiento: PROFESOR DOCENTE ASOCIADO "A"
Categoría: TEMPORAL
Resumen curricular:
El Dr. Bernardo Morales es profesor del Centro Universitario de Ciencias Exactas e Ingenierías de la Universidad de Guadalajara. Es Ingeniero en computación, Maestro en Ciencias de la Ingeniería Electrónica y Computación, y Doctor en Ciencias de la Electrónica y Computación. Es miembro del Sistema Nacional de Investigadores nivel 1, tiene un índice H de 7 y cuenta con 15 artículos JCR, ademas de un libro, múltiples capítulos de libro y una patente. Sus líneas de investigación incluyen el análisis y diseños de algoritmos metaheurísticos, visión artificial y segmentación de imágenes.
Perfil de Investigador SNII:
Nivel SNII:
I
Área del conocimiento:
VIII. Ingenierías y Desarrollo Tecnológico, y
Campo de investigación:
Ciencias tecnológicas
Periodo vigente:
1 de enero de 2023
-
31 de diciembre de 2027
Bases de datos bibliográficas:
Publicaciones del académico:
2026 - 1 articulos.
- Initialization and Diversity in Optimization Algorithms
2025 - 4 articulos.
- Analyzing metaheuristic algorithms performance and the causes of the zero-bias problem: a different perspective in benchmarks
- Diversity Measurement in Different PSO Variants Applied to Global Optimization and Classical Engineering Problems
- Simulating flood situations in urban hydrology using a diffusion model in complex networks
- Addressing Limitations and Inaccuracy of Diversity Metrics in Evolutionary Algorithms with an Accurate Dimension-Wise Diversity
2024 - 22 articulos.
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- Exploration Paths Derived from Trajectories Extracted from Second-Order System Responses
- Enhancing Anisotropic Diffusion Filtering via Multi-objective Optimization
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- Utilizing the Moth Swarm Algorithm to Improve Image Contrast
- Introduction to Metaheuristic Methods
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- A Measure of Diversity for Metaheuristic Algorithms Employing Population-Based Approaches
- Fractional Fuzzy Controller Using Metaheuristic Techniques
- Population of Hyperparametric Solutions for the Design of Metaheuristic Algorithms: An Empirical Analysis of Performance in Particle Swarm Optimization
- Population Control in Metaheuristic Algorithms: Can Fewer Be Better?
- Metaheuristics International Conference
- Adaptability and Efficiency in Population Management: A multi-population CMA-ES Strategy for High-Dimensional Optimization
- Handling the balance of operators in evolutionary algorithms through a weighted Hill Climbing approach
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- Striving for Optimal Equilibrium in Metaheuristic Algorithms: Is It Attainable?
- Population of Hyperparametric Solutions for the Design of Metaheuristic Algorithms: An Empirical Analysis of Performance in Particle Swarm Optimization
- A Novel Method for Initializing Populations Using the Metropolis–Hastings (MH) Technique
- Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis
- Considering radial basis function neural network for effective solution generation in metaheuristic algorithms
2023 - 6 articulos.
- A new method to solve rotated template matching using metaheuristic algorithms and the structural similarity index
- Improving Metaheuristic Algorithm Design Through Inequality and Diversity Analysis: A Novel Multi-Population Differential Evolution
- Optimal evaluation of re-opening policies for COVID-19 through the use of metaheuristic schemes
- A novel diversity-aware inertia weight and velocity control for particle swarm optimization
- An Hyper-Heuristic Based Population Management Through Statistical Analysis and Phases Optimization
- Improving the Convergence of the PSO Algorithm with a Stagnation Variable and Fuzzy Logic
2022 - 8 articulos.
- Studies in Computational Intelligence
- A Review of the Use of Quasi-random Number Generators to Initialize the Population in Meta-heuristic Algorithms
- An agent-based transmission model of COVID-19 for re-opening policy design
- An improved multi-population whale optimization algorithm
- Improving the optimization performance by an adaptable design: A dynamic selection of operators via criteria-based matrix for evolutionary algorithms
- Handling stagnation through diversity analysis: A new set of operators for evolutionary algorithms
- Solving Reality-Based Trajectory Optimization Problems with Metaheuristic Algorithms Inspired by Metaphors
- A diversity metric for population-based metaheuristic algorithms
2021 - 3 articulos.
- Population management in metaheuristic algorithms: Could less be more?
- Group-based synchronous-asynchronous grey wolf optimizer
- Improving the segmentation of magnetic resonance brain images using the LSHADE optimization algorithm
2020 - 6 articulos.
- A better balance in metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation, 54, 100671
- An improved clustering method based on biological visual models
- A better balance in metaheuristic algorithms: Does it exist?
- A better balance in metaheuristic algorithms: Does it exist? Swarm Evol Comput 54: 100671
- A better balance in metaheuristic algorithms: Does it exist?, Swarm Evol. Comput., 54 (2020), 100671
- A better balance in metaheuristic algorithms: does it exist? Swarm Evol. Comput. 54, 100671 (2020)