Perfil del usuario

Dr. ERIK VALDEMAR CUEVAS JIMÉNEZ

erik.cuevas@academicos.udg.mx
Departamento de adscripción: INGENIERIA ELECTRO-FOTONICA
Nombramiento: PROFESOR E INVESTIGADOR TITULAR "C"
Categoría: DEFINITIVO

Resumen curricular:

El doctor Erik Cuevas es profesor en el Centro Universitario de Ciencias Exactas e ingenierías de la Universidad de Guadalajara. En 2006 obtuvo doctor en Inteligencia Artificial por la Universidad Libre de Berlín en Alemania. Es miembro del Sistema Nacional de Investigadores Nivel III, con un índice H de 33. Ha publicado varios artículos y libros. Actualmente es editor de las revistas Expert System with Applications, Soft Computing, Mathematics and Computers in Simulation, Artificial Intelligence Review, Applied Soft Computing, Applied Mathematical Modelling, International Journal of Machine Learning and Cybernetics, Pattern Analysis and Applications, Evolutionary Intelligence, International Journal of Computational Intelligence Systems. Sur áreas de interés son los algoritmos metaheurísticos, el machine learning y procesamiento de imagen.

Perfil de Investigador SNII:

Nivel SNII:
III
Área del conocimiento:
VIII. Ingenierías y Desarrollo Tecnológico, y
Campo de investigación:
INTELIGENCIA ARTIFICIAL
Periodo vigente:
1 de enero de 2021 - 31 de diciembre de 2026

Perfil PRODEP:

Inicio de la vigencia:
30 de agosto de 2022
Fin de la vigencia:
29 de agosto de 2028

Bases de datos bibliográficas:

Publicaciones del académico:

2025 - 35 articulos.
  • Impact of Programming Languages on Learning Performance
  • Integrating agent-based models and clustering methods for improving image segmentation
  • Metaheuristic Techniques for Fine‐Tuning Parameter of Complex Systems
  • Techniques of Machine Learning Mixed with Metaheuristic Methods
  • Metaheuristic Methods for Clustering
  • Metaheuristic Methods for Regression
  • Metaheuristic Methods for Classification
  • Main Metaheuristic Techniques
  • Fundamentals of Machine Learning
  • Fundamental Machine Learning Methods
  • DC Motors: Modeling, Designing and Building with 3D Printers
  • Agent-Based Modeling Approaches as Metaheuristic Methods
  • Analyzing metaheuristic algorithms performance and the causes of the zero-bias problem: a different perspective in benchmarks
  • Modeling Optimization Techniques Inspired by Yellow Saddle Goatfish Behavior
  • Locust Search Algorithm: A Novel Swarm Intelligence Approach for Complex Optimization
  • An Algorithm for Global Optimization Inspired by Collective Animal Behavior
  • Techniques of Machine Learning for Modifying the Search Strategy
  • An improved swarm optimization algorithm using exploration and evolutionary game theory for efficient exploitation
  • Metaheuristic Methods for Dimensional Reduction
  • A novel cheetah optimizer hybrid approach based on opposition-based learning (OBL) and diversity metrics
  • Curve Fitting
  • Probability Distributions and the Random Search Method
  • The EOQ Problem with Multiple Suppliers, Restrictions, and Volume Discounts
  • Introduction and John’s Story
  • Basic Concepts of Optimization
  • Evolutionary Strategies (ES)
  • The Gradient Descent Method Generalization for N Dimensions
  • Brief History and Classification of Metaheuristic Optimization Methods
  • The Simulated Annealing Method
  • The Particle Swarm Optimization Method
  • Techniques of Machine Learning for Producing Metaheuristic Operators
  • Agent-Based Models with MATLAB
  • An Optimization Algorithm Inspired by the States of Matter that Improves the Balance Between Exploration and Exploitation
  • A Fuzzy Logic-Inspired Metaheuristic Method for Enhanced Optimization
  • Improving Function Evaluation Efficiency with an Enhanced Evolutionary Algorithm
2024 - 15 articulos.